Intro [Week 1] |
Wed, Jan. 17 |
Lec.
1: Introduction
Overview, syllabus, logistics
|
|
lab0
out |
Fri, Jan. 19 |
Lec.
2: Digital Image
patch, spatial resolution, bit depth, channel
|
|
|
Mon, Jan. 22 |
Lec.
3: Image Formation
Natural image: pinhole
Microscopy and medical images
|
|
|
Module I: Digital Image Processing (DIP)
|
Image Filtering [Week 2-3]
|
Wed, Jan. 24 |
Lec.
4: Pixel-level Processing
Transfer function
|
|
lab0 due
|
Fri, Jan. 26 |
Lec.
5: General Filtering
Filtering, padding
|
|
|
Mon, Jan. 29 |
Lec.
6: Linear Filtering
Linear: Convolution
Impulse, Box, Sharpen
|
|
ps1 out (dip)
|
Wed, Jan. 31 |
Lec.
7:
More Linear Filtering
Gaussian filter, edge filter
|
|
lab1 due
|
Fri, Feb. 2 |
Lec. 8:
Nonlinear Filtering
match filter, bilateral
Edge detection
|
|
|
Image Registration [Week 4-5]
|
Mon, Feb. 5 |
Lec.
9: Image Transformation
Image transformation
|
|
|
Wed, Feb. 7 |
Lec.
10: Template Matching
Intensity-based, translation
|
|
|
Fri, Feb. 9 |
Guest
Lecture: Microscopy Image Analysis
|
|
lab2 due
|
Mon, Feb. 12 |
Lec.
11: Scale Invariant Feature Transformation
SIFT-based
|
|
ps1 due
fp
team sign-up
|
Wed, Feb. 14 |
Lec.
12: Transformation Estimation
Linear regression, RANSAC
|
|
ps2 out (dip+image)
|
Image Segmentation [Week 5-6]
| Fri, Feb. 16 |
Lec.
13: Image Segmentation I
Why: drug discovery, connectomics
What: semantic, instance, panoptic
|
|
|
Mon, Feb. 19 |
Lec.
14: Image Segmentation II
Semantic: Ostu
Instance: connected component, Watershed
|
|
lab3 due
fp sign-up due
|
Wed, Feb. 21 |
Lec.
15:
Morphological Operation and Analysis
graph-based segmentation: NCut, MRF
Operation: dilation, erosion
Analysis: statistics
|
|
|
Module II: Deep Learning (DL)
|
Machine Learning [Week 7] |
Fri, Feb. 23 |
Lec.
16: Overview
ML: pipeline, tasks
|
Overview
- [F] Chap. 1.1
- Coding: Scikit-learn
|
fp check-in (topic)
|
Mon, Feb. 26 |
Lec.
17:
Unsupervised Learning
Kmeans, PCA
|
|
fp check-in (topic)
|
Wed, Feb. 28 |
Lec.
18:
Supervised Learning
Linear regression, basis function
|
|
lab4 due
ps2 due
|
Fri, Mar. 1 |
Lec. 19:
Linear Classification
Data: discrete label
Layer: Linear, sigmoid
|
|
fp proposal due
|
No Class (Happy Spring Break) |
MLP Model [Week 9] |
Mon, Mar. 11 |
Lec. 20:
Linear Classification II
Loss: cross-entropy
Optimization: SGD, momentum
|
|
|
Wed, Mar. 13 |
Lec. 21: Linear Classification III
Implementation: Numpy and Pytorch
|
|
lab5 due
|
Fri, Mar. 15 |
Lec. 22:
Multilayer Perceptron (MLP) I
Layer: Softmax, ReLU
|
|
fp check-in (data)
|
Mon, Mar. 18 |
Lec. 23:
Multilayer Perceptron (MLP) II
Layer: Dropout
Optimization: backpropagation
|
|
ps3 out (dl)
|
CNN Model [Week 10] |
Wed, Mar. 20 |
Lec. 24:
LeNet and AlexNet
Layer: convolution, pooling
|
|
lab6 due
|
Fri, Mar. 22 |
Lec.
25: VGGNet, BatchNorm, and ResNet
3x3 Filter, BatchNorm, ResNet
|
|
fp check-in (model)
|
Transformer Model [Week 11]
|
Mon, Mar. 25 |
Lec.
26: Attention Layers and Encodings
M: Attention module
|
|
|
Wed, Mar. 27 |
Lec.
27: Transformer Model
M: Attention layer, token, embedding, positional encoding
|
|
lab7 due
|
No Class (Good Friday) |
No Class (Easter Monday) |
Wed, Apr. 3 |
Lec.
28: Vision Transformer
GPT, ViT
|
|
ps3 due
|
Image Applications [Week
12-13] |
Fri, Apr. 5 |
Lec.
29: Image Classification: Recent Advances
D: augmentation
O: transfer learning
L: label smoothing
|
|
|
Mon, Apr. 8 |
Lec. 30: Object
Detection
CNN approach: R-CNN, Fast/Faster R-CNN, YOLO
Transformer approach: DETR
|
Target domain: bounding boxes
|
lab8 due
|
Wed, Apr. 10 |
Lec.
31: Image Segmentation
FCN, Encoder-Decoder, UNet
|
Target domain: segmentation map
|
fp check-in (exp)
|
Fri, Apr. 12 |
Lec.
32: Image Generation
GAN and conditional GAN
Diffusion model
|
Target domain: natural images
|
|
Multimodal Applications [Week
14] |
Tue, Apr. 16 (Mon class) |
Guest Lec.: Medical Volume Processing
|
|
fp check-in (in-person)
|
Wed, Apr. 17 |
Lec. 32: Text-Image
Representation
image sampling, image translation, DALL.E
|
|
lab9 due
|
Fri, Apr. 19 |
Lec. 34:
Video Applications
Action recognition
Recurrent Neural Network
|
|
ps4 due
|
Module III: Foundation Modeling
|
Foundational Modeling [Week 15] |
Mon, Apr. 22 |
Lec.
35: Foundation Modeling
Multimodal input, Task convergence
SAM, Florence, GPT4-V
|
|
|
Wed, Apr. 24 |
Guest
Lec.: Medical Foundation Model
|
|
|
Final Projects
|
Presentation |
Fri, Apr. 26 |
Presentation I
|
|
lab10 due
fp slide due
|
Mon, Apr. 29 |
Presentation II
|
|
|
Wed, May. 1 |
Presentation III
|
|
|
Submission |
Sun, May. 12 |
|
|
fp report/code due
|