Module I: Digital Image Processing (DIP) |
DIP Basics [Week 1-2] |
Wed, Jan. 18 |
Lec. 1: Introduction
|
|
lab0 out |
Fri, Jan. 20 |
Lec. 2: Image Formation
Digital image, biomedical images
Coding: Imageio, Matplotlib
|
|
|
Mon, Jan. 23 |
Lec. 3: Pixel-level Processing
Transfer function
Coding: NumPy
|
|
|
Wed, Jan. 25 |
Lec. 4: Patch-level Processing
Linear and nonlinear filtering
Coding: NumPy
|
|
lab0 due
ps1 out (dip)
|
Fri, Jan. 27 |
Lab 1: Numpy Basics
|
Maths review: linear algebra
|
|
DIP+2D Images [Week 3-5] |
Mon, Jan. 30 |
Lec. 5: Image Features
Edge, corner, texture
|
Task I: Region of Interest (ROI) Detection
- [T] Chap. 4.2.3, 5.3, 5.10
|
|
Wed, Feb. 1 |
Case I (BIO): Microscopy Image Analysis
|
Task II: Image Preprocessing
|
lab1 due
|
Fri, Feb. 3 |
Lab 2: Registration Toolbox
|
|
|
Mon, Feb. 6 |
Lec. 6: Image Transformation
Image transformation
Coding: OpenCV
|
Task III: Image Registeration
|
|
Wed, Feb. 8 |
Lec. 7: Transformation Estimation
Feature matching, RANSAC
|
Task III: Image Registeration
|
lab2 due
|
Fri, Feb. 10 |
Lab 3: Registration Toolbox
|
|
|
Mon, Feb. 13 |
Lec. 8: Image Segmentation
Semantic: Otsu thresholding
Instance: connected component
|
Task IV: Object segmentation
|
ps1 due
|
Wed, Feb. 15 |
Lec. 9: Image Segmentation II
Instance: Watershed, Graph cut
|
Task IV: Object segmentation
|
lab3 due
|
Fri, Feb. 17 |
Lab 4: Segmentation Toolbox
Post-processing: Morphological operation
Analysis: Descriptive statistics
|
|
|
Module II: Deep Learning (DL) |
DL Basics [Week 6-9] |
Mon, Feb. 20 |
Lec. 10: Machine Learning Overview
ML: pipeline, tasks
Coding: Scikit-learn
|
Overview
|
fp team sign-up
ps2 out (dip+image)
|
Wed, Feb. 22 |
Lec. 11: Linear Regression
Layer: linear, polynomial feature
Optimization: least-square estimation
|
AlexNet: linear layer
|
lab4 due
|
Fri, Feb. 24 |
Lab. 5: Unsupervised Learning
Kmeans, PCA
|
|
|
Mon, Feb. 27 |
Lec. 12: Linear Classification I
Layer: transfer function (sign, logistic)
|
AlexNet: loss layer
|
fp team info due
|
Wed, Mar. 1 |
Lec. 13: Linear Classification II
Optimization: stochastic gradient descent
Code: Pytorch
|
AlexNet: model
|
lab5 due
|
Fri, Mar. 3 |
Lab 6: BC Admission Classification
Softmax, Multilayer Perceptron
Pytorch: Dataloader
|
|
|
No Class (Happy Spring Break) |
Mon, Mar. 13 |
Lec. 14: Multilayer Perceptron
Softmax
Layer: activation linear
|
AlexNet: non-linear layer
|
fp check-in (in-person)
|
Wed, Mar. 15 |
Lec. 15: Convolutional Neural Networks
Layer: convolution, pooling
|
AlexNet: remaining layers
|
ps2 due
|
Fri, Mar. 17 |
Lec. 16: Backpropagation
Backpropagation as dynamic programming
|
|
|
Mon, Mar. 20 |
Lec. 17: Deep Learning Review
MOLD
|
|
lab6 due
ps3 out (dl)
|
DL+2D Images [Week 10-12] |
Wed, Mar. 22 |
Case II (MED): Ultrasound Image Analysis
|
Overview and applications
|
fp proposal due
|
Fri, Mar. 24 |
Lec. 18: Image Prediction
3x3 Filter, BatchNorm, ResNet
|
Three Tricks to Crack ImageNet
|
lab7 due
|
Mon, Mar. 27 |
Lec. 19: Hacker's Guide
|
|
|
Wed, Mar. 29 |
Lec. 20: Object Detection
Problem setup, R-CNN
|
Target domain: bounding boxes
|
fp check-in (data)
|
Fri, Mar. 31 |
Lec. 21: Object Detection II
Fast/Faster R-CNN, YOLO
|
|
lab8 due
|
Mon, Apr. 3 |
Lec. 22: Image Segmentation
FCN, Encoder-Decoder, UNet
|
Application: Fetal head segmentation
|
ps3 due
|
Wed, Apr. 5 |
Lec. 23: Image Generation
GAN and conditional GAN
|
Target domain: natural images
|
fp check-in (model)
lab9 due
ps4 out (dl+image)
|
No Class (Good Friday) |
No Class (Easter Monday) |
DL+Videos [Week 13-14] |
Wed, Apr. 12 |
Case III: (PSYC) Human Video Analysis
|
Overview and applications
|
|
Fri, Apr. 14 |
Lec. 24: Image Generation II
Style transfer and DALL.E
|
|
|
Tue, Apr. 18 (Mon class) |
Lec. 25: Motion Estimation
Motion representation
Optical flow
|
|
lab10 due
|
Wed, Apr. 19 |
Lec. 26: Video Classification
Action recognition
Recurrent Neural Network
|
|
lab9 due
|
Fri, Apr. 21 |
Lec. 27: Object Tracking
Research presentation
Direct tracking
|
|
ps4 due
|
DL+3D Volumes [Week 15] |
Mon, Apr. 24 |
Case IV: (NEURO) Connectomics with Expansion Microscopy
|
|
fp check-in (in-person)
|
Wed, Apr. 26 |
Lec. 28: Volumetric Processing
Representation: voxel, point cloud, implicit surface
pointNet, NERF
|
|
|
Final Projects [Week 15-18] |
Fri, Apr. 28 |
Presentation I
|
|
fp slide due
|
Mon, May. 1 |
Presentation II
|
| |
Wed, May. 3 |
Presentation III
|
| |
Mon, May. 15 |
|
| fp report/code due |