Module I: Digital Image Processing (DIP) |
DIP Basics [Week 1-2] |
Tue, Jan. 18 |
Lec. 1: Introduction
Overview, logistics
Coding: Github, Jupyterhub
|
|
final project (guideline)
|
Thu, Jan. 20 |
Lec. 2: Biomedical Image Modalities
Digital image, biomedical images
Coding: Imageio, Matplotlib
|
|
|
Tue, Jan. 25 |
Lec. 3: Image Operations
Transfer function (pixel-level), filtering (patch-level)
Coding: NumPy
|
|
lab1 due
|
Thu, Jan. 27 |
Lec. 4: Image Features
Edge, corner, texture
Coding: OpenCV
|
- [T] Chap. 4.2.3, 5.3, 5.10
|
|
DIP+2D Images [Week 3-4] |
Tue, Feb. 1 |
Case I (BIO): Microscopy Image Analysis
|
Task I: Image Preprocessing
|
ps1 out (dip)
|
Thu, Feb. 3 |
Lec. 5: Image Registration
Image transformation, stitching
Coding: OpenCV
|
Task II: Image Registeration
|
lab2 due
|
Tue, Feb. 8 |
Lec. 6: Image Segmentation I
Thresholding, connected component
Coding: Scikit-image
|
Task III: Object detection
|
|
Thu, Feb. 10 |
Lec. 7: Morphology Analysis
Morphological operation
Descriptive statistics
|
Task IV: Object measurement
|
lab3 due
|
Module II: Deep Learning (DL) |
DL Basics [Week 5-7] |
Tue, Feb. 15 |
Lec. 8: Machine Learning Overview
ML: pipeline, tasks
Coding: Scikit-learn
|
Overview
|
|
Thu, Feb. 17 |
Lec. 9: Linear Regression
Layer: linear, polynomial feature
Optimization: least-square estimation
|
AlexNet: linear layer
|
ps1 due (Wed)
lab4 due
|
Tue, Feb. 22 |
Lec. 10: Linear Classification
Layer: transfer function (sign, logistic)
|
AlexNet: loss layer
|
ps2 out (dip+image)
|
Thu, Feb. 24 |
Lec. 11: Optimization and PyTorch Basics
Optimization: stochastic gradient descent
Coding: PyTorch
|
AlexNet: optimization
|
final project (team sign-up)
|
Tue, Mar. 1 |
Lec. 12: Multilayer Perceptron
Layer: non-linear
Optimization: backpropagation
|
AlexNet: non-linear layer
|
lab5 due
|
Thu, Mar. 3 |
Lec. 13: Convolutional Neural Networks
Layer: convolution, pooling
|
AlexNet: remaining layers
|
lab6 due
ps2 due (Fri)
|
Tue, Mar. 8 |
No Class (Spring Break) |
Thu, Mar. 10 |
No Class (Spring Break) |
DL+2D Images [Week 9-11] |
Tue, Mar. 15 |
Case II (MED): Ultrasound Image Analysis
|
Overview and applications
|
final project (check-in due)
|
Thu, Mar. 17 |
Lec. 14: Image Prediction
Modern practice: model
|
Application: Thyroid nodules classification
|
final project (proposal due)
lab7 due (Fri)
|
Tue, Mar. 22 |
Lec. 15: Image Prediction II
Modern practice: loss, optimization (transfer learning), data
|
|
ps3 out (dl)
|
Thu, Mar. 24 |
Lec. 16: Image Segmentation
Task reduction: scalar -> map
|
Application: Fetal head segmentation, Amniotic fluid detection
|
final project (check-in: data)
lab9 due (Fri)
|
Tue, Mar. 29 |
Lec. 17: Review and Object Detection
Building block, pipeline from scratch, hacking, problem formulation
Object detection
|
Deep learning review:
|
|
Ethics |
Thu, Mar. 31 |
Lec. 18: Bioethics
|
|
ps3 due (Fri)
lab10 due
|
DL+Videos [Week 12-13] |
Tue, Apr. 5 |
Case III: (PSYC) Human Video Analysis
|
Overview and applications
|
|
Thu, Apr. 7 |
Lec. 19: Video Prediction
Motion estimation, action recognition
3D CNN and RNNs
|
Task I: Action recognition
|
final project (check-in: model, Fri)
lab11 due
|
Tue, Apr. 12 |
Lec. 20: Object Tracking
Research presentation
Direct tracking
|
Task II: Eye tracking
|
ps4 out (dl+image, Mon)
|
Thu, Apr. 14 |
No Class (Holy Thursday) |
Tue, Apr. 19 |
No Class (Monday Schedule) |
DL+3D Volumes [Week 14-15] |
Thu, Apr. 21 |
Case IV: (NEURO) Connectomics and 3D Instance Segmentation
|
Computer science task
|
ps4 due (Fri)
|
Tue, Apr. 26 |
Hypothesis-driven vs Data-driven: a case study on mitochondria morphology
|
Neuroscience perspective
- measurement -> new knowledge
|
final project (check-in: in-person with slide drafts)
|
Final Projects [Week 15-17] |
Thu, Apr. 28 |
Presentation I
|
|
final project (final slide due)
|
Tue, May. 3 |
Presentation II
|
| |
Thu, May. 5 |
Presentation III
|
| |
Tue, May. 17 |
|
| final project (report/code due) |